Despite recent advances in the reasoning capabilities of Large Language Models (LLMs), improving the reasoning ability of Small Language Models (SLMs, e.g., up to 1.5B parameters) remains challenging. A key obstacle lies in the complexity and variability of natural language: essentially equivalent problems often appear in diverse surface forms, often obscured by redundant or distracting details. This imposes a dual burden on SLMs: they must first extract the core problem from complex linguistic input, and then perform reasoning based on that understanding. The resulting vast and noisy problem space hinders optimization, particularly for models with limited capacity. To address this, we propose a new framework that decouples understanding from reasoning by mapping natural language problems into a canonical problem space-a semantically simplified yet expressive domain. This enables SLMs to focus on reasoning over standardized inputs, free from linguistic variability. Within this framework, we introduce DURIT (Decoupled Understanding from Reasoning via Iterative Training), a three-step algorithm that iteratively: (1) mapping natural language problems via reinforcement learning, (2) aligns reasoning trajectories through self-distillation, and (3) trains reasoning policies in the problem space. The mapper and reasoner are co-trained in an alternating loop throughout this process. Experiments show that DURIT substantially improves SLMs' performance on both in-domain and out-of-domain mathematical and logical reasoning tasks. Beyond improving reasoning capabilities, DURIT also improves the robustness of reasoning, validating decoupling understanding from reasoning as an effective strategy for strengthening SLMs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员