Deep neural networks (DNNs) have been widely used in computer vision tasks like image classification, object detection and segmentation. Whereas recent studies have shown their vulnerability to manual digital perturbations or distortion in the input images. The accuracy of the networks is remarkably influenced by the data distribution of their training dataset. Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks. In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples. The aim of our work is to study the impact of scaled images on the performance of advanced DNNs. We perform experiments on several state-of-the-art deep neural network architectures on the proposed ImageNet-CS, and the results show a significant positive correlation between scaling size and accuracy decline. Moreover, based on ResNet50 architecture, we demonstrate some tests on the performance of recent proposed robust training techniques and strategies like Augmix, Revisiting and Normalizer Free on our proposed ImageNet-CS. Experiment results have shown that these robust training techniques can improve networks' robustness to scaling transformation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员