This paper integrates nonlinear-manifold reduced order models (NM-ROMs) with domain decomposition (DD). NM-ROMs approximate the FOM state in a nonlinear-manifold by training a shallow, sparse autoencoder using FOM snapshot data. These NM-ROMs can be advantageous over linear-subspace ROMs (LS-ROMs) for problems with slowly decaying Kolmogorov n-width. However, the number of NM-ROM parameters that need to be trained scales with the size of the FOM. Moreover, for "extreme-scale" problems, the storage of high-dimensional FOM snapshots alone can make ROM training expensive. To alleviate the training cost, this paper applies DD to the FOM, computes NM-ROMs on each subdomain, and couples them to obtain a global NM-ROM. This approach has several advantages: Subdomain NM-ROMs can be trained in parallel, involve fewer parameters to be trained than global NM-ROMs, require smaller subdomain FOM dimensional training data, and can be tailored to subdomain-specific features of the FOM. The shallow, sparse architecture of the autoencoder used in each subdomain NM-ROM allows application of hyper-reduction (HR), reducing the complexity caused by nonlinearity and yielding computational speedup of the NM-ROM. This paper provides the first application of NM-ROM (with HR) to a DD problem. In particular, it details an algebraic DD reformulation of the FOM, trains a NM-ROM with HR for each subdomain, and develops a sequential quadratic programming (SQP) solver to evaluate the coupled global NM-ROM. Theoretical convergence results for the SQP method and a priori and a posteriori error estimates for the DD NM-ROM with HR are provided. The proposed DD NM-ROM with HR approach is numerically compared to a DD LS-ROM with HR on the 2D steady-state Burgers' equation, showing an order of magnitude improvement in accuracy of the proposed DD NM-ROM over the DD LS-ROM.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员