This paper resolves the open question of designing near-optimal algorithms for learning imperfect-information extensive-form games from bandit feedback. We present the first line of algorithms that require only $\widetilde{\mathcal{O}}((XA+YB)/\varepsilon^2)$ episodes of play to find an $\varepsilon$-approximate Nash equilibrium in two-player zero-sum games, where $X,Y$ are the number of information sets and $A,B$ are the number of actions for the two players. This improves upon the best known sample complexity of $\widetilde{\mathcal{O}}((X^2A+Y^2B)/\varepsilon^2)$ by a factor of $\widetilde{\mathcal{O}}(\max\{X, Y\})$, and matches the information-theoretic lower bound up to logarithmic factors. We achieve this sample complexity by two new algorithms: Balanced Online Mirror Descent, and Balanced Counterfactual Regret Minimization. Both algorithms rely on novel approaches of integrating \emph{balanced exploration policies} into their classical counterparts. We also extend our results to learning Coarse Correlated Equilibria in multi-player general-sum games.


翻译:本文解决从私有反馈学习不完美信息博弈的近最优算法设计的问题。我们提出了第一条算法线路,仅需要 $\widetilde{\mathcal{O}}((XA+YB)/\varepsilon^2)$ 次游戏来在两人零和游戏中找到一个 $\varepsilon$-近似纳什均衡。其中,$X,Y$ 是信息集的数量,$A,B$ 是两个玩家的可行动作的数量。这比已知最优样本复杂度 $\widetilde{\mathcal{O}}((X^2A+Y^2B)/\varepsilon^2)$ 提高了 $\widetilde{\mathcal{O}}(\max\{X,Y\})$ 的因子,且能够达到信息论的下界,相差对数因子。我们通过两种新算法来实现这种样本复杂度:平衡的在线镜像下降 和 平衡的可逆选择后悔最小化。两种算法都依赖于将平衡的探索策略集成到其经典对应方法中的新方法。我们还将我们的结果扩展到了多人常规和游戏中学习粗略相关均衡。

0
下载
关闭预览

相关内容

【2022新书】强化学习工业应用,408页pdf
专知会员服务
231+阅读 · 2022年2月3日
【斯坦福2021新书】决策算法,694页pdf阐述不确定性决策
专知会员服务
264+阅读 · 2021年1月27日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关VIP内容
【2022新书】强化学习工业应用,408页pdf
专知会员服务
231+阅读 · 2022年2月3日
【斯坦福2021新书】决策算法,694页pdf阐述不确定性决策
专知会员服务
264+阅读 · 2021年1月27日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员