Spectral-type subspace clustering algorithms have shown excellent performance in many subspace clustering applications. The existing spectral-type subspace clustering algorithms either focus on designing constraints for the reconstruction coefficient matrix or feature extraction methods for finding latent features of original data samples. In this paper, inspired by graph convolutional networks, we use the graph convolution technique to develop a feature extraction method and a coefficient matrix constraint simultaneously. And the graph-convolutional operator is updated iteratively and adaptively in our proposed algorithm. Hence, we call the proposed method adaptive graph convolutional subspace clustering (AGCSC). We claim that by using AGCSC, the aggregated feature representation of original data samples is suitable for subspace clustering, and the coefficient matrix could reveal the subspace structure of the original data set more faithfully. Finally, plenty of subspace clustering experiments prove our conclusions and show that AGCSC outperforms some related methods as well as some deep models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
127+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员