Provenance-based threat hunting identifies Advanced Persistent Threats (APTs) on endpoints by correlating attack patterns described in Cyber Threat Intelligence (CTI) with provenance graphs derived from system audit logs. A fundamental challenge in this paradigm lies in the modality gap -- the structural and semantic disconnect between provenance graphs and CTI reports. Prior work addresses this by framing threat hunting as a graph matching task: 1) extracting attack graphs from CTI reports, and 2) aligning them with provenance graphs. However, this pipeline incurs severe \textit{information loss} during graph extraction and demands intensive manual curation, undermining scalability and effectiveness. In this paper, we present APT-CGLP, a novel cross-modal APT hunting system via Contrastive Graph-Language Pre-training, facilitating end-to-end semantic matching between provenance graphs and CTI reports without human intervention. First, empowered by the Large Language Model (LLM), APT-CGLP mitigates data scarcity by synthesizing high-fidelity provenance graph-CTI report pairs, while simultaneously distilling actionable insights from noisy web-sourced CTIs to improve their operational utility. Second, APT-CGLP incorporates a tailored multi-objective training algorithm that synergizes contrastive learning with inter-modal masked modeling, promoting cross-modal attack semantic alignment at both coarse- and fine-grained levels. Extensive experiments on four real-world APT datasets demonstrate that APT-CGLP consistently outperforms state-of-the-art threat hunting baselines in terms of accuracy and efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员