Motivated by the studies of twisted generalized Reed-Solomon (TGRS) codes, we initiate the study of twisted elliptic curve codes (TECCs) in this paper. In particular, we study a class of TECCs with one twist. The parity-check matrices of the TECCs are explicitly given by computing the Weil differentials. Then the sufficient and necessary conditions of self-duality are presented. The minimum distances of the TECCs are also determined. Moreover, examples of MDS, AMDS, self-dual and MDS self-dual TECCs are given. Finally, we calculate the dimensions of the Schur squares of TECCs and show the non-equivalence between TECCs and ECCs/GRS codes.


翻译:受扭曲广义Reed-Solomon(TGRS)码研究的启发,本文首次系统性地探讨了扭曲椭圆曲线码(TECCs)。特别地,我们重点研究了一类具有单一扭曲的TECCs。通过计算Weil微分,我们明确给出了TECCs的奇偶校验矩阵。随后,我们提出了自对偶性的充分必要条件,并确定了TECCs的最小距离。此外,我们还给出了MDS、AMDS、自对偶及MDS自对偶TECCs的具体实例。最后,我们计算了TECCs的Schur平方的维数,并证明了TECCs与ECCs/GRS码之间的非等价性。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
20+阅读 · 2020年12月9日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
20+阅读 · 2020年12月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员