News recommendation systems play a critical role in alleviating information overload by delivering personalized content. A key challenge lies in jointly modeling multi-view representations of news articles and capturing the dynamic, dual-scale nature of user interests-encompassing both short- and long-term preferences. Prior methods often rely on single-view features or insufficiently model user behavior across time. In this work, we introduce Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news encoding and LSTUR for hierarchical user modeling, designed for training on limited data resources. Our approach leverages BERT-based embeddings to enhance semantic representation. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Results show that our model significantly outperforms strong baselines, achieving improvements over NRMS by 1.55% in AUC and 1.15% in MRR, and over NAML by 2.45% in AUC and 1.71% in MRR. These findings highlight the effectiveness of our efficiency-focused hybrid model, which combines multi-view news modeling with dual-scale user representations for practical, resource-limited resources rather than a claim to absolute state-of-the-art (SOTA). The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR


翻译:新闻推荐系统通过提供个性化内容,在缓解信息过载方面发挥着关键作用。一个核心挑战在于联合建模新闻文章的多视角表征,并捕捉用户兴趣的动态、双尺度特性——涵盖短期与长期偏好。现有方法通常依赖单视角特征或对跨时间用户行为的建模不足。本文提出Co-NAML-LSTUR,一种混合新闻推荐框架,它整合了NAML用于注意力多视角新闻编码和LSTUR用于分层用户建模,专为有限数据资源下的训练而设计。我们的方法利用基于BERT的嵌入来增强语义表征。我们在两个广泛使用的基准数据集MIND-small和MIND-large上评估Co-NAML-LSTUR。结果表明,我们的模型显著优于强基线,在AUC上相比NRMS提升1.55%、在MRR上提升1.15%,相比NAML在AUC上提升2.45%、在MRR上提升1.71%。这些发现凸显了我们以效率为导向的混合模型的有效性,该模型结合了多视角新闻建模与双尺度用户表征,适用于实际、资源受限的场景,而非声称绝对的最先进(SOTA)性能。模型实现已公开于https://github.com/MinhNguyenDS/Co-NAML-LSTUR。

0
下载
关闭预览

相关内容

新闻,是指报纸、电台、电视台、互联网等媒体经常使用的记录与传播信息的 [2] 一种文体,是反映时代的一种文体。新闻概念有广义与狭义之分。广义上:除了发表于报刊、广播、互联网、电视上的评论与专文外的常用文本都属于新闻,包括消息、通讯、特写、速写(有的将速写纳入特写之列)等等; [3] 狭义上:消息是用概括的叙述方式,以较简明扼要的文字,迅速及时地报道附近新近发生的、有价值的事实,使一定人群了解。新闻一般包括标题、导语、主体、背景和结语五部分。前三者是主要部分,后二者是辅助部分。写法以叙述为主兼或有议论、描写、评论等。新闻是包含海量资讯的新闻服务平台,真实反映每时每刻的重要事件。您可以搜索新闻事件、热点话题、人物动态、产品资讯等,快速了解它们的最新进展。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员