The Constraint Satisfaction Problem (CSP) is a problem of computing a homomorphism $\mathbf{R}\to \mathbf{\Gamma}$ between two relational structures, where $\mathbf{R}$ is defined over a domain $V$ and $\mathbf{\Gamma}$ is defined over a domain $D$. In a fixed template CSP, denoted $\rm{CSP}(\mathbf{\Gamma})$, the right side structure $\mathbf{\Gamma}$ is fixed and the left side structure $\mathbf{R}$ is unconstrained. In the last two decades it was discovered that the reasons that make fixed template CSPs polynomially solvable are of algebraic nature, namely, templates that are tractable should be preserved under certain polymorphisms. From this perspective the following problem looks natural: given a prespecified finite set of algebras ${\mathcal B}$ whose domain is $D$, is it possible to present the solution set of a given instance of $\rm{CSP}(\mathbf{\Gamma})$ as a subalgebra of ${\mathbb A}_1\times ... \times {\mathbb A}_{|V|}$ where ${\mathbb A}_i\in {\mathcal B}$? We study this problem and show that it can be reformulated as an instance of a certain fixed-template CSP over another template $\mathbf{\Gamma}^{\mathcal B}$. We study conditions under which $\rm{CSP}(\mathbf{\Gamma})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$. This issue is connected with the so-called CSP with an input prototype, formulated in the following way: given a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}^{\mathcal B}$ find a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}$. We prove that if ${\mathcal B}$ contains only tractable algebras, then the latter CSP with an input prototype is tractable. We also prove that $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma})$ if the set ${\mathcal B}$, treated as a relation over $D$, can be expressed as a primitive positive formula over $\mathbf{\Gamma}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员