We develop domain theory in constructive and predicative univalent foundations (also known as homotopy type theory). That we work predicatively means that we do not assume Voevodsky's propositional resizing axioms. Our work is constructive in the sense that we do not rely on excluded middle or the axiom of (countable) choice. Domain theory studies so-called directed complete posets (dcpos) and Scott continuous maps between them and has applications in a variety of fields, such as programming language semantics, higher-type computability and topology. A common approach to deal with size issues in a predicative foundation is to work with information systems, abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. In our type-theoretic approach, we instead accept that dcpos may be large and work with type universes to account for this. A priori one might expect that iterative constructions of dcpos may result in a need for ever-increasing universes and are predicatively impossible. We show, through a careful tracking of type universe parameters, that such constructions can be carried out in a predicative setting. In particular, we give a predicative reconstruction of Scott's $D_\infty$ model of the untyped $\lambda$-calculus. Our work is formalised in the Agda proof assistant and its ability to infer universe levels has been invaluable for our purposes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员