Bonsai Merkle tree (BMT) is a widely used data structure for authenticating data/metadata in a secure computing system. However, the predominantly recursive andsequential nature of traditional BMT algorithms make them challenging to implement with Field-Programmable Gate Array (FPGA) in modern heterogeneous computing platforms. In this work, we introduce HMT, a hardware-friendly implementation methodology for BMT that enables the verification and update processes to function independently, as well as saves additional write-backs by making the update conditions more flexible compared to previous algorithms. The methodology of HMT contributes both novel algorithm revisions and innovative hardware techniques to implementing BMT. Our empirical performance measurements have demonstrated that HMT can achieve up to 7x improvement in bandwidth and 4.5x reduction in latency over the baseline.


翻译:Bonsai Merkle树(BMT)是一个广泛使用的数据结构,用于在一个安全的计算系统中验证数据/元数据,然而,传统的BMT算法主要具有循环性和顺序性,因此难以在现代混合计算平台中与外地可配置门阵列(FPGA)一起实施。在这项工作中,我们引入了HMT,这是BMT的硬件友好执行方法,使核查和更新程序能够独立运作,并通过使更新条件与以前的算法相比更加灵活而节省了额外的回写。 HMT的方法为实施BMT提供了新的算法修订和创新的硬件技术。我们的经验性绩效测量表明,HMT能够在基线上实现高达7x的带宽改进和4.5x的延绳。

0
下载
关闭预览

相关内容

Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树。Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值。非叶节点是其对应子节点串联字符串的hash。
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年6月8日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年3月3日
Top
微信扫码咨询专知VIP会员