We present a method for computing optimal fixed-width confidence intervals for a single, bounded parameter, extending a method for the binomial due to Asparaouhov and Lorden, who called it the Push algorithm. The method produces the shortest possible non-decreasing confidence interval for a given confidence level, and if the Push interval does not exist for a given width and level, then no such interval exists. The method applies to any bounded parameter that is discrete, or is continuous and has the monotone likelihood ratio property. We demonstrate the method on the binomial, hypergeometric, and normal distributions with our available R package. In each of these distributions the proposed method outperforms the standard ones, and in the latter case even improves upon the $z$-interval. We apply the proposed method to World Health Organization (WHO) data on tobacco use.


翻译:我们提出了一种计算单个有界参数的最优固定宽度置信区间的方法,该方法扩展了Asparaouhov和Lorden针对二项分布提出的方法(他们称之为Push算法)。该方法在给定置信水平下生成最短的非递减置信区间,若对于特定宽度和水平不存在Push区间,则表明此类区间不存在。该方法适用于任何离散的有界参数,或具有单调似然比性质的连续有界参数。我们通过可用的R包在二项分布、超几何分布和正态分布上验证了该方法。在这些分布中,所提方法均优于标准方法,在正态分布中甚至改进了$z$区间。我们将所提方法应用于世界卫生组织(WHO)的烟草使用数据。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员