This study focuses on exploring the use of local interpretability methods for explaining time series clustering models. Many of the state-of-the-art clustering models are not directly explainable. To provide explanations for these clustering algorithms, we train classification models to estimate the cluster labels. Then, we use interpretability methods to explain the decisions of the classification models. The explanations are used to obtain insights into the clustering models. We perform a detailed numerical study to test the proposed approach on multiple datasets, clustering models, and classification models. The analysis of the results shows that the proposed approach can be used to explain time series clustering models, specifically when the underlying classification model is accurate. Lastly, we provide a detailed analysis of the results, discussing how our approach can be used in a real-life scenario.


翻译:本研究的重点是探索使用当地可解释的方法解释时间序列群集模型。许多最先进的群集模型不能直接解释。为了解释这些群集算法,我们训练分类模型来估计群集标签。然后,我们用可解释的方法解释分类模型的决定。我们用这些解释来了解群集模型。我们进行详细的数字研究,以测试关于多个数据集、群集模型和分类模型的拟议方法。对结果的分析表明,提议的方法可以用来解释时间序列群集模型,特别是当基本分类模型准确时。最后,我们详细分析结果,讨论如何在现实生活中使用我们的方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员