Spatiotemporal predictive learning, which predicts future frames through historical prior knowledge with the aid of deep learning, is widely used in many fields. Previous work essentially improves the model performance by widening or deepening the network, but it also brings surging memory overhead, which seriously hinders the development and application of this technology. In order to improve the performance without increasing memory consumption, we focus on scale, which is another dimension to improve model performance but with low memory requirement. The effectiveness has been widely demonstrated in many CNN-based tasks such as image classification and semantic segmentation, but it has not been fully explored in recent RNN models. In this paper, learning from the benefit of multi-scale, we propose a general framework named Multi-Scale RNN (MS-RNN) to boost recent RNN models for spatiotemporal predictive learning. By integrating different scales, we enhance the existing models with both improved performance and greatly reduced overhead. We verify the MS-RNN framework by exhaustive experiments with eight popular RNN models (ConvLSTM, TrajGRU, PredRNN, PredRNN++, MIM, MotionRNN, PredRNN-V2, and PrecipLSTM) on four different datasets (Moving MNIST, TaxiBJ, KTH, and Germany). The results show the efficiency that the RNN models incorporating our framework have much lower memory cost but better performance than before. Our code is released at \url{https://github.com/mazhf/MS-RNN}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员