While deep neural networks are highly performant and successful in a wide range of real-world problems, estimating their predictive uncertainty remains a challenging task. To address this challenge, we propose and implement a loss function for regression uncertainty estimation based on the Bayesian Validation Metric (BVM) framework while using ensemble learning. The proposed loss reproduces maximum likelihood estimation in the limiting case. A series of experiments on in-distribution data show that the proposed method is competitive with existing state-of-the-art methods. Experiments on out-of-distribution data show that the proposed method is robust to statistical change and exhibits superior predictive capability.


翻译:虽然深神经网络在一系列现实世界问题中表现良好并十分成功,但估计其预测不确定性仍是一项艰巨的任务。为了应对这一挑战,我们提议并采用共同学习方法,根据贝叶西亚校验Metric(BVM)框架实施回归不确定性估算损失功能。拟议的损失在有限情况下重复了最大的可能性估算。一系列关于分配数据实验表明,拟议方法与现有最新方法相比具有竞争力。关于分配外数据的实验表明,拟议方法对统计变化具有很强的活力,并显示出较高的预测能力。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Design-Based Uncertainty for Quasi-Experiments
Arxiv
0+阅读 · 2022年11月18日
Arxiv
30+阅读 · 2021年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员