Active imitation learning (AIL) combats covariate shift by querying an expert during training. However, expert action labeling often dominates the cost, especially in GPU-intensive simulators, human-in-the-loop settings, and robot fleets that revisit near-duplicate states. We present Conformalized Rejection Sampling for Active Imitation Learning (CRSAIL), a querying rule that requests an expert action only when the visited state is under-represented in the expert-labeled dataset. CRSAIL scores state novelty by the distance to the $K$-th nearest expert state and sets a single global threshold via conformal prediction. This threshold is the empirical $(1-α)$ quantile of on-policy calibration scores, providing a distribution-free calibration rule that links $α$ to the expected query rate and makes $α$ a task-agnostic tuning knob. This state-space querying strategy is robust to outliers and, unlike safety-gate-based AIL, can be run without real-time expert takeovers: we roll out full trajectories (episodes) with the learner and only afterward query the expert on a subset of visited states. Evaluated on MuJoCo robotics tasks, CRSAIL matches or exceeds expert-level reward while reducing total expert queries by up to 96% vs. DAgger and up to 65% vs. prior AIL methods, with empirical robustness to $α$ and $K$, easing deployment on novel systems with unknown dynamics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员