In light of emerging legal requirements and policies focused on privacy protection, there is a growing trend of companies across various industries adopting Federated Learning (FL). This decentralized approach involves multiple clients or silos, collaboratively training a global model under the coordination of a central server while utilizing their private local data. Unlike traditional methods that necessitate data sharing and transmission, Cross-Silo FL allows clients to share model updates rather than raw data, thereby enhancing privacy. Despite its growing adoption, the carbon impact associated with Cross-Silo FL remains poorly understood due to the limited research in this area. This study seeks to bridge this gap by evaluating the sustainability of Cross-Silo FL throughout the entire AI product lifecycle, extending the analysis beyond the model training phase alone. We systematically compare this decentralized method with traditional centralized approaches and present a robust quantitative framework for assessing the costs and CO2 emissions in real-world Cross-Silo FL environments. Our findings indicate that the energy consumption and costs of model training are comparable between Cross-Silo Federated Learning and Centralized Learning. However, the additional data transfer and storage requirements inherent in Centralized Learning can result in significant, often overlooked CO2 emissions. Moreover, we introduce an innovative data and application management system that integrates Cross-Silo FL and analytics, aiming at improving the sustainability and economic efficiency of IT enterprises.
翻译:暂无翻译