A wide spectrum of design and decision problems, including parameter tuning, A/B testing and drug design, intrinsically are instances of black-box optimization. Bayesian optimization (BO) is a powerful tool that models and optimizes such expensive "black-box" functions. However, at the beginning of optimization, vanilla Bayesian optimization methods often suffer from slow convergence issue due to inaccurate modeling based on few trials. To address this issue, researchers in the BO community propose to incorporate the spirit of transfer learning to accelerate optimization process, which could borrow strength from the past tasks (source tasks) to accelerate the current optimization problem (target task). This survey paper first summarizes transfer learning methods for Bayesian optimization from four perspectives: initial points design, search space design, surrogate model, and acquisition function. Then it highlights its methodological aspects and technical details for each approach. Finally, it showcases a wide range of applications and proposes promising future directions.


翻译:包括参数调适、A/B测试和药物设计在内的范围广泛的设计和决策问题,本质上是黑箱优化的例子。贝叶斯优化(BO)是一个强大的工具,可以模拟和优化这种昂贵的“黑箱”功能。然而,在优化之初,香草巴伊西亚优化方法往往由于基于少数试验的模型不准确而出现缓慢的趋同问题。为了解决这一问题,BO社区的研究人员提议将转移学习的精神纳入加速优化进程,这可以从过去的任务(源任务)中借用力量来加速目前的优化问题(目标任务),本调查文件首先总结了从四个角度为巴伊西亚优化转让学习方法:初步点设计、搜索空间设计、代孕模型和获取功能。然后,它强调了每种方法的方法和技术细节。最后,它展示了广泛的应用和技术细节,并提出有希望的未来方向。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Survey on Bayesian Deep Learning
Arxiv
64+阅读 · 2020年7月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
64+阅读 · 2020年7月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员