The fidelity of quantum programs in the NISQ era is limited by high levels of device noise. To increase the fidelity of quantum programs running on NISQ devices, a variety of optimizations have been proposed. These include mapping passes, routing passes, scheduling methods and standalone optimisations which are usually incorporated into a transpiler as passes. Popular transpilers such as those proposed by Qiskit, Cirq and Cambridge Quantum Computing make use of these extensively. However, choosing the right set of transpiler passes and the right configuration for each pass is a challenging problem. Transpilers often make critical decisions using heuristics since the ideal choices are impossible to identify without knowing the target application outcome. Further, the transpiler also makes simplifying assumptions about device noise that often do not hold in the real world. As a result, we often see effects where the fidelity of a target application decreases despite using state-of-the-art optimisations. To overcome this challenge, we propose OPTRAN, a framework for Choosing an Optimal Pass Set for Quantum Transpilation. OPTRAN uses classically simulable quantum circuits composed entirely of Clifford gates, that resemble the target application, to estimate how different passes interact with each other in the context of the target application. OPTRAN then uses this information to choose the optimal combination of passes that maximizes the target application's fidelity when run on the actual device. Our experiments on IBM machines show that OPTRAN improves fidelity by 87.66% of the maximum possible limit over the baseline used by IBM Qiskit. We also propose low-cost variants of OPTRAN, called OPTRAN-E-3 and OPTRAN-E-1 that improve fidelity by 78.33% and 76.66% of the maximum permissible limit over the baseline at a 58.33% and 69.44% reduction in cost compared to OPTRAN respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月17日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员