Cyber-Physical Systems (CPSs) play a central role in the behavior of a wide range of autonomous physical systems such as medical devices, autonomous vehicles, and smart homes, many of which are safety-critical. CPSs are often specified iteratively as a sequence of models at different levels that can be tested via simulation systems at early stages of their development cycle. One such model is a hybrid automaton; these are used frequently for CPS applications and have the advantage of encapsulating both continuous and discrete CPS behaviors. When testing CPSs, engineers can take advantage of these models to generate test cases that target both types of these behaviors. Moreover, since these models are constructed early in the development process for CPSs, they allow test cases to be generated early in that process for those CPSs, even before simulation models of the CPSs have been designed. One challenge when testing CPSs is that these systems may operate differently even under an identically applied test scenario. In such cases, we cannot employ test oracles that use predetermined deterministic behaviors; instead, test oracles should consider sets of desired behaviors in order to determine whether the CPS has behaved appropriately. In this paper we present a test case generation technique, HYTEST, that generates test cases based on hybrid models, accompanied by appropriate test oracles, for use in testing CPSs early in their development cycle. To evaluate the effectiveness and efficiency of HYTEST, we conducted an empirical study in which we applied the technique to several CPSs and measured its ability to detect faults in those CPSs and the amount of time required to perform the testing process. The results of the study show that HYTEST was able to detect faults more effectively and efficiently than the baseline techniques we compare it to.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员