Deep networks have become increasingly of interest in dynamical system prediction, but generalization remains elusive. In this work, we consider the physical parameters of ODEs as factors of variation of the data generating process. By leveraging ideas from supervised disentanglement in VAEs, we aim to separate the ODE parameters from the dynamics in the latent space. Experiments show that supervised disentanglement allows VAEs to capture the variability in the dynamics and extrapolate better to ODE parameter spaces that were not present in the training data.


翻译:深网络对动态系统预测的兴趣日益浓厚,但一般化仍然难以实现。 在这项工作中,我们认为脱氧核糖核酸的物理参数是数据生成过程变化的因素。 通过利用VAEs中受监管的分解观点,我们的目标是将脱氧核糖核酸参数与潜在空间的动态分开。实验显示,由监管的分解使得脱氧核糖核酸能够捕捉动态的变异性,并更好地推断出在培训数据中不存在的脱氧核糖核酸参数空间。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Top
微信扫码咨询专知VIP会员