We announce two breakthrough results concerning important questions in the Theory of Computational Complexity. In this expository paper, a systematic and comprehensive geometric characterization of the Subset Sum Problem is presented. We show the existence of a universal geometric structure, comprised of a family of non-decreasing paths in the Cartesian plane, that captures any instance of the problem of size $n$. Inspired by the geometric structure, we provide an unconditional, deterministic and polynomial time algorithm, albeit with fairly high complexity, thereby showing that $\mathcal{P} = \mathcal{NP}$. Furthermore, our algorithm also outputs the number of solutions to the problem in polynomial time, thus leading to $\mathcal{FP} = \mathcal{\#P}$. As a bonus, one important consequence of our results, out of many, is that the quantum-polynomial class $\mathcal{BQP} \subseteq \mathcal{P}$. Not only this, but we show that when multiple solutions exist, they can be placed in certain equivalence classes based on geometric attributes, and be compactly represented by a polynomial sized directed acyclic graph. We show that the Subset Sum Problem has two aspects, namely a combinatorial aspect and a relational aspect, and that it is the latter which is the primary determiner of complexity. We reveal a surprising connection between the size of the elements and their number, and the precise way in which they affect the complexity. In particular, we show that for all instances of the Subset Sum Problem, the complexity is independent of the size of elements, once the difference between consecutive elements exceeds $\lceil{7\log{}n}\rceil$ bits in size. We provide some numerical examples to illustrate the algorithm, and also show how it can be used to estimate some difficult combinatorial quantities such as the number of restricted partitions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员