Suppose two separated parties, Alice and Bob, share a bipartite quantum state or a classical correlation called a seed, and they try to generate a target classical correlation by performing local quantum or classical operations on the seed, i.e., any communications are not allowed. We consider the following fundamental problem about this setting: whether Alice and Bob can use a given seed to generate a target classical correlation. We show that this problem has rich mathematical structures. Firstly, we prove that even if the seed is a pure bipartite state, the above decision problem is already NP-hard and a similar conclusion can also be drawn when the seed is also a classical correlation, implying that this problem is hard to solve generally. Furthermore, we prove that when the seed is a pure quantum state, solving the problem is equivalent to finding out whether the target classical correlation has some canonical form of positive semi-definite factorizations that matches the seed pure state, revealing an interesting connection between the current problem and optimization theory. Based on this observation and other insights, we give several necessary conditions where the seed pure state has to satisfy to generate the target classical correlation, and it turns out that these conditions can also be generalized to the case that the seed is a mixed quantum state. Lastly, since canonical forms of positive semi-definite factorizations play a crucial role in solving the problem, we develop an algorithm that can compute them for an arbitrary classical correlation, which has decent performance on the cases we test.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月8日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员