In practice, Wearable Human Activity Recognition (WHAR) models usually face performance degradation on the new user due to user variance. Unsupervised domain adaptation (UDA) becomes the natural solution to cross-user WHAR under annotation scarcity. Existing UDA models usually align samples across domains without differentiation, which ignores the difference among samples. In this paper, we propose an unsupervised domain adaptation model with sample weight learning (SWL-Adapt) for cross-user WHAR. SWL-Adapt calculates sample weights according to the classification loss and domain discrimination loss of each sample with a parameterized network. We introduce the meta-optimization based update rule to learn this network end-to-end, which is guided by meta-classification loss on the selected pseudo-labeled target samples. Therefore, this network can fit a weighting function according to the cross-user WHAR task at hand, which is superior to existing sample differentiation rules fixed for special scenarios. Extensive experiments on three public WHAR datasets demonstrate that SWL-Adapt achieves the state-of-the-art performance on the cross-user WHAR task, outperforming the best baseline by an average of 3.1% and 5.3% in accuracy and macro F1 score, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员