Hallucinations in LLMs--especially in multimodal settings--undermine reliability. We present a rigorous, information-geometric framework in diffusion dynamics that quantifies hallucination in MLLMs: model outputs are embedded spectrally on multimodal graph Laplacians, and gaps to a truth manifold define a semantic-distortion metric. We derive Courant--Fischer bounds on a temperature-dependent hallucination energy and use RKHS eigenmodes to obtain modality-aware, interpretable measures that track evolution over prompts and time. This reframes hallucination as measurable and bounded, providing a principled basis for evaluation and mitigation.
翻译:暂无翻译