Reconfigurable intelligent surfaces (RISs) are envisioned as a promising technology for future wireless communication systems due to their ability to control the propagation environment in a hardware- and energy-efficient way. Recently, the concept of RISs has been extended to beyond diagonal RISs (BD-RISs), which unlock the full potential of RISs thanks to the presence of tunable interconnections between RIS elements. While various algorithms have been proposed for specific BD-RIS architectures, a universal optimization framework applicable to arbitrary architectures is still lacking. In this paper, we bridge this research gap by proposing an architecture-independent framework for BD-RIS optimization, with the main focus on sum-rate maximization and transmit power minimization in multiuser multi-input single-output (MU-MISO) systems. Specifically, we first incorporate BD-RIS architectures into the models by connecting the scattering matrix with the admittance matrix and introducing appropriate constraints to the admittance matrix. The formulated problems are then solved by our custom-designed partially proximal alternating direction method of multipliers (pp-ADMM) algorithms. The pp-ADMM algorithms are computationally efficient, with each subproblem either admitting a closed-form solution or being easily solvable. We further explore the extension of the proposed framework to general utility functions and multiuser multi-input multi-output (MU-MIMO) systems. Simulation results demonstrate that the proposed approaches achieve a better trade-off between performance and computational efficiency compared to existing methods. We also compare the performance of various BD-RIS architectures in MU-MISO systems using the proposed approach, which has not been explored before due to the lack of an architecture-independent framework.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员