We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs under a vertex-percolation subcriticality condition. We show that this subcriticality condition is optimal in the sense that the problem of (approximately) sampling weighted rooted graphlets becomes impossible for infinite graphs and intractable for finite graphs if the condition does not hold. We apply our rooted graphlet sampling algorithm as a subroutine to give a fast perfect sampling algorithm for polymer models and a fast perfect sampling algorithm for weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. We apply this polymer model algorithm to give improved sampling algorithms for spin systems at low temperatures on expander graphs and other structured families of graphs: under the least restrictive conditions known we give near linear-time algorithms, while previous algorithms in these regimes required large polynomial running times.


翻译:我们给出一个高效的完美抽样算法,用于根基、连接引导的底部、底部、底部、底部、底部、底部的子图(或石墨),以备在顶部、底部次临界状态条件下使用。我们显示,这个亚临界状态状态最理想,因为(大约)抽样加权根部石墨的问题对于无限图来说是不可能的,如果条件不维持,对于定数图来说也难以解决。我们用我们根基的石墨取样算法作为子例,为聚合物模型提供一个快速完美的取样算法,为加权、非底部、定点、两个广泛研究但非常不同的问题提供一个快速完美的取样算法。我们应用这个聚合物模型算法,在扩张式图和其他结构化的图表组别上,为低温的旋转系统提供更好的取样算法:在已知的最小限制性条件下,我们提供了近线性算法,而这些系统中以前的算法则需要大型多数值运行时间。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
专知会员服务
86+阅读 · 2020年12月5日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
86+阅读 · 2020年12月5日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员