This work generalizes the binary search problem to a $d$-dimensional domain $S_1\times\cdots\times S_d$, where $S_i=\{0, 1, \ldots,n_i-1\}$ and $d\geq 1$, in the following way. Given $(t_1,\ldots,t_d)$, the target element to be found, the result of a comparison of a selected element $(x_1,\ldots,x_d)$ is the sequence of inequalities each stating that either $t_i < x_i$ or $t_i>x_i$, for $i\in\{1,\ldots,d\}$, for which at least one is correct, and the algorithm does not know the coordinate $i$ on which the correct direction to the target is given. Among other cases, we show asymptotically almost matching lower and upper bounds of the query complexity to be in $\Omega(n^{d-1}/d)$ and $O(n^d)$ for the case of $n_i=n$. In particular, for fixed $d$ these bounds asymptotically do match. This problem is equivalent to the classical binary search in case of one dimension and shows interesting differences for higher dimensions. For example, if one would impose that each of the $d$ inequalities is correct, then the search can be completed in $\log_2\max\{n_1,\ldots,n_d\}$ queries. In an intermediate model when the algorithm knows which one of the inequalities is correct the sufficient number of queries is $\log_2(n_1\cdot\ldots\cdot n_d)$. The latter follows from a graph search model proposed by Emamjomeh-Zadeh et al. [STOC 2016].


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月2日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员