Recently, Multi-Contrast MR Reconstruction (MCMR) has emerged as a hot research topic that leverages high-quality auxiliary modalities to reconstruct undersampled target modalities of interest. However, existing methods often struggle to generalize across different k-space undersampling patterns, requiring the training of a separate model for each specific pattern, which limits their practical applicability. To address this challenge, we propose UniFS, a Unified Frequency-Spatial Fusion model designed to handle multiple k-space undersampling patterns for MCMR tasks without any need for retraining. UniFS integrates three key modules: a Cross-Modal Frequency Fusion module, an Adaptive Mask-Based Prompt Learning module, and a Dual-Branch Complementary Refinement module. These modules work together to extract domain-invariant features from diverse k-space undersampling patterns while dynamically adapt to their own variations. Another limitation of existing MCMR methods is their tendency to focus solely on spatial information while neglect frequency characteristics, or extract only shallow frequency features, thus failing to fully leverage complementary cross-modal frequency information. To relieve this issue, UniFS introduces an adaptive prompt-guided frequency fusion module for k-space learning, significantly enhancing the model's generalization performance. We evaluate our model on the BraTS and HCP datasets with various k-space undersampling patterns and acceleration factors, including previously unseen patterns, to comprehensively assess UniFS's generalizability. Experimental results across multiple scenarios demonstrate that UniFS achieves state-of-the-art performance. Our code is available at https://github.com/LIKP0/UniFS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员