The Branch Target Buffer (BTB) plays a critical role in efficient CPU branch prediction. Understanding the design and implementation of the BTB provides valuable insights for both compiler design and the mitigation of hardware attacks such as Spectre. However, the proprietary nature of dominant CPUs, such as those from Intel, AMD, Apple, and Qualcomm, means that specific BTB implementation details are not publicly available. To address this limitation, several previous works have successfully reverse-engineered BTB information, including capacity and associativity, primarily targeting Intel's x86 processors. However, to our best knowledge, no research has attempted to reverse-engineer and expose the BTB implementation of ARM processors. This project aims to fill the gap by exploring the BTB of ARM processors. Specifically, we investigate whether existing reverse-engineering techniques developed for Intel BTB can be adapted for ARM. We reproduce the x86 methodology and identify specific PMU events for ARM to facilitate the reverse engineering process. In our experiment, we investigated our ARM CPU, i.e., the quad-core Cortex-A72 of the Raspberry Pi 4B. Our results show that the BTB capacity is 4K, the set index starts from the 5th bit and ends with the 15th bit of the PC (11 bits in total), and there are 2 ways in each set. The source code can be find at https://github.com/stefan1wan/BTB_ARM_RE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

安谋控股公司,又称ARM公司,跨国性半导体设计与软件公司,总部位于英国英格兰剑桥。主要的产品是ARM架构处理器的设计,将其以知识产权的形式向客户进行授权,同时也提供软件开发工具。 维基百科
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
13+阅读 · 2020年10月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员