Pseudorandom states (PRSs) are state ensembles that cannot be distinguished from Haar random states by any efficient quantum algorithm. However, the definition of PRSs has been limited to pure states and lacks robustness against noise. In this work, we introduce pseudorandom density matrices (PRDMs), ensembles of $n$-qubit states that are computationally indistinguishable from the generalized Hilbert-Schmidt ensemble, which is constructed from $(n+m)$-qubit Haar random states with $m$ qubits traced out. For a mixedness parameter $m=0$, PRDMs are equivalent to PRSs, whereas for $m=\omega(\log n)$, PRDMs are computationally indistinguishable from the maximally mixed state. In contrast to PRSs, PRDMs with $m=\omega(\log n)$ are robust to unital noise channels and a recently introduced $\mathsf{PostBQP}$ attack. Further, we construct pseudomagic and pseudocoherent state ensembles, which possess near-maximal magic and coherence, but are computationally indistinguishable from states with zero magic and coherence. PRDMs can exhibit a pseudoresource gap of $\Theta(n)$ vs $0$, surpassing previously found gaps. We introduce noise-robust EFI pairs, which are state ensembles that are computationally indistinguishable yet statistically far, even when subject to noise. We show that testing entanglement, magic and coherence is not efficient. Further, we prove that black-box resource distillation requires a superpolynomial number of copies. We also establish lower bounds on the purity needed for efficient testing and black-box distillation. Finally, we introduce memoryless PRSs, a noise-robust notion of PRS which are indistinguishable to Haar random states for efficient algorithms without quantum memory. Our work provides a comprehensive framework of pseudorandomness for mixed states, which yields powerful quantum cryptographic primitives and fundamental bounds on quantum resource theories.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
14+阅读 · 2018年4月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员