ARM recently introduced the Confidential Compute Architecture (CCA) as part of the upcoming ARMv9-A architecture. CCA enables the support of confidential virtual machines (cVMs) within a separate world called the Realm world, providing protection from the untrusted normal world. While CCA offers a promising future for confidential computing, the widespread availability of CCA hardware is not expected in the near future, according to ARM's roadmap. To address this gap, we present virtCCA, an architecture that facilitates virtualized CCA using TrustZone, a mature hardware feature available on existing ARM platforms. Notably, virtCCA can be implemented on platforms equipped with the Secure EL2 (S-EL2) extension available from ARMv8.4 onwards, as well as on earlier platforms that lack S-EL2 support. virtCCA is fully compatible with the CCA specifications at the API level. We have developed the entire CCA software and firmware stack on top of virtCCA, including the enhancements to the normal world's KVM to support cVMs, and the TrustZone Management Monitor (TMM) that enforces isolation among cVMs and provides cVM life-cycle management. We have implemented virtCCA on real ARM servers, with and without S-EL2 support. Our evaluation, conducted on micro-benchmarks and macro-benchmarks, demonstrates that the overhead of running cVMs is acceptable compared to running normal-world VMs. Specifically, in a set of real-world workloads, the overhead of virtCCA-SEL2 is less than 29.5% for I/O intensive workloads, while virtCCA-EL3 outperforms the baseline in most cases.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员