The \emph{Fast Gaussian Transform} (FGT) enables subquadratic-time multiplication of an $n\times n$ Gaussian kernel matrix $\mathsf{K}_{i,j}= \exp ( - \| x_i - x_j \|_2^2 ) $ with an arbitrary vector $h \in \mathbb{R}^n$, where $x_1,\dots, x_n \in \mathbb{R}^d$ are a set of \emph{fixed} source points. This kernel plays a central role in machine learning and random feature maps. Nevertheless, in most modern data analysis applications, datasets are dynamically changing (yet often have low rank), and recomputing the FGT from scratch in (kernel-based) algorithms incurs a major computational overhead ($\gtrsim n$ time for a single source update $\in \mathbb{R}^d$). These applications motivate a \emph{dynamic FGT} algorithm, which maintains a dynamic set of sources under \emph{kernel-density estimation} (KDE) queries in \emph{sublinear time} while retaining Mat-Vec multiplication accuracy and speed. Assuming the dynamic data-points $x_i$ lie in a (possibly changing) $k$-dimensional subspace ($k\leq d$), our main result is an efficient dynamic FGT algorithm, supporting the following operations in $\log^{O(k)}(n/\varepsilon)$ time: (1) Adding or deleting a source point, and (2) Estimating the ``kernel-density'' of a query point with respect to sources with $\varepsilon$ additive accuracy. The core of the algorithm is a dynamic data structure for maintaining the \emph{projected} ``interaction rank'' between source and target boxes, decoupled into finite truncation of Taylor and Hermite expansions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月16日
Arxiv
0+阅读 · 2024年3月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员