Sequential recommendation aims to provide users with personalized suggestions based on their historical interactions. When training sequential models, padding is a widely adopted technique for two main reasons: 1) The vast majority of models can only handle fixed-length sequences; 2) Batching-based training needs to ensure that the sequences in each batch have the same length. The special value \emph{0} is usually used as the padding content, which does not contain the actual information and is ignored in the model calculations. This common-sense padding strategy leads us to a problem that has never been explored before: \emph{Can we fully utilize this idle input space by padding other content to further improve model performance and training efficiency?} In this paper, we propose a simple yet effective padding method called \textbf{Rep}eated \textbf{Pad}ding (\textbf{RepPad}). Specifically, we use the original interaction sequences as the padding content and fill it to the padding positions during model training. This operation can be performed a finite number of times or repeated until the input sequences' length reaches the maximum limit. Our RepPad can be viewed as a sequence-level data augmentation strategy. Unlike most existing works, our method contains no trainable parameters or hyperparameters and is a plug-and-play data augmentation operation. Extensive experiments on various categories of sequential models and five real-world datasets demonstrate the effectiveness and efficiency of our approach. The average recommendation performance improvement is up to 60.3\% on GRU4Rec and 24.3\% on SASRec. We also provide in-depth analysis and explanation of what makes RepPad effective from multiple perspectives. The source code will be released to ensure the reproducibility of our experiments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员