In this paper, we study fluctuations of conditionally centered statistics of the form $$N^{-1/2}\sum_{i=1}^N c_i(g(\sigma_i)-\mathbb{E}_N[g(\sigma_i)|\sigma_j,j\neq i])$$ where $(\sigma_1,\ldots ,\sigma_N)$ are sampled from a dependent random field, and $g$ is some bounded function. Our first main result shows that under weak smoothness assumptions on the conditional means (which cover both sparse and dense interactions), the above statistic converges to a Gaussian \emph{scale mixture} with a random scale determined by a \emph{quadratic variance} and an \emph{interaction component}. We also show that under appropriate studentization, the limit becomes a pivotal Gaussian. We leverage this theory to develop a general asymptotic framework for maximum pseudolikelihood (MPLE) inference in dependent random fields. We apply our results to Ising models with pairwise as well as higher-order interactions and exponential random graph models (ERGMs). In particular, we obtain a joint central limit theorem for the inverse temperature and magnetization parameters via the joint MPLE (to our knowledge, the first such result in dense, irregular regimes), and we derive conditionally centered edge CLTs and marginal MPLE CLTs for ERGMs without restricting to the ``sub-critical" region. Our proof is based on a method of moments approach via combinatorial decision-tree pruning, which may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员