Concealed weapon detection aims at detecting weapons hidden beneath a person's clothing or luggage. Various imaging modalities like Millimeter Wave, Microwave, Terahertz, Infrared, etc., are exploited for the concealed weapon detection task. These imaging modalities have their own limitations, such as poor resolution in microwave imaging, privacy concerns in millimeter wave imaging, etc. To provide a real-time, 24 x 7 surveillance, low-cost, and privacy-preserved solution, we opted for thermal imaging in spite of the lack of availability of a benchmark dataset. We propose a novel approach and a dataset for concealed weapon detection in thermal imagery. Our YOLO-based architecture, DEF-YOLO, is built with key enhancements in YOLOv8 tailored to the unique challenges of concealed weapon detection in thermal vision. We adopt deformable convolutions at the SPPF layer to exploit multi-scale features; backbone and neck layers to extract low, mid, and high-level features, enabling DEF-YOLO to adaptively focus on localization around the objects in thermal homogeneous regions, without sacrificing much of the speed and throughput. In addition to these simple yet effective key architectural changes, we introduce a new, large-scale Thermal Imaging Concealed Weapon dataset, TICW, featuring a diverse set of concealed weapons and capturing a wide range of scenarios. To the best of our knowledge, this is the first large-scale contributed dataset for this task. We also incorporate focal loss to address the significant class imbalance inherent in the concealed weapon detection task. The efficacy of the proposed work establishes a new benchmark through extensive experimentation for concealed weapon detection in thermal imagery.
翻译:暂无翻译