Biomechanics and human movement research often involves measuring multiple kinematic or kinetic variables regularly throughout a movement, yielding data that present as smooth, multivariate, time-varying curves and are naturally amenable to functional data analysis. It is now increasingly common to record the same movement repeatedly for each individual, resulting in curves that are serially correlated and can be viewed as longitudinal functional data. We present a new approach for modelling multivariate multilevel longitudinal functional data, with application to kinematic data from recreational runners collected during a treadmill run. For each stride, the runners' hip, knee and ankle angles are modelled jointly as smooth multivariate functions that depend on subject-specific covariates. Longitudinally varying multivariate functional random effects are used to capture the dependence among adjacent strides and changes in the multivariate functions over the course of the treadmill run. A basis modelling approach is adopted to fit the model -- we represent each observation using a multivariate functional principal components basis and model the basis coefficients using scalar longitudinal mixed effects models. The predicted random effects are used to understand and visualise changes in the multivariate functional data over the course of the treadmill run. In our application, our method quantifies the effects of scalar covariates on the multivariate functional data, revealing a statistically significant effect of running speed at the hip, knee and ankle joints. Analysis of the predicted random effects reveals that individuals' kinematics are generally stable but certain individuals who exhibit strong changes during the run can also be identified. A simulation study is presented to demonstrate the efficacy of the proposed methodology under realistic data-generating scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员