We consider network games where a large number of agents interact according to a network sampled from a random network model, represented by a graphon. By exploiting previous results on convergence of such large network games to graphon games, we examine a procedure for estimating unknown payoff parameters, from observations of equilibrium actions, without the need for exact network information. We prove smoothness and local convexity of the optimization problem involved in computing the proposed estimator. Additionally, under a notion of graphon parameter identifiability, we show that the optimal estimator is globally unique. We present several examples of identifiable homogeneous and heterogeneous parameters in different classes of linear quadratic network games with numerical simulations to validate the proposed estimator.


翻译:我们考虑网络博弈,其中大量代理根据随机网络模型进行交互,该模型由图状函数表示。通过利用以前的大型网络博弈收敛于图状博弈的结果,我们研究了一种从均衡行动的观察中估计未知收益参数的过程,而无需精确的网络信息。我们证明了涉及计算所提议的估计器的优化问题的平滑性和局部凸性。此外,在图状参数可识别性的概念下,我们证明了最优估计器的全局唯一性。我们提供了几个可识别的同质和异质参数的示例,这些参数属于不同类的线性二次网络博弈,并提供了数值模拟来验证所提议的估计器。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员