We study the problem of preconditioning in sequential prediction. From the theoretical lens of linear dynamical systems, we show that convolving the input sequence corresponds to applying a polynomial to the hidden transition matrix. Building on this insight, we propose a universal preconditioning method that convolves the input with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We prove that this approach reduces regret for two distinct prediction algorithms and yields the first ever sublinear and hidden-dimension independent regret bounds (up to logarithmic factors) that hold for systems with marginally stable and asymmetric transition matrices. Finally, extensive synthetic and real-world experiments show that this simple preconditioning strategy improves the performance of a diverse range of algorithms, including recurrent neural networks, and generalizes to signals beyond linear dynamical systems.
翻译:暂无翻译