Multimedia content has become ubiquitous on social media platforms, leading to the rise of multimodal misinformation and the urgent need for effective strategies to detect and prevent its spread. This study focuses on CrossModal Misinformation (CMM) where image-caption pairs work together to spread falsehoods. We contrast CMM with Asymmetric Multimodal Misinformation (AMM), where one dominant modality propagates falsehoods while other modalities have little or no influence. We show that AMM adds noise to the training and evaluation process while exacerbating the unimodal bias, where text-only or image-only detectors can seemingly outperform their multimodal counterparts on an inherently multimodal task. To address this issue, we collect and curate FIGMENTS, a robust evaluation benchmark for CMM, which consists of real world cases of misinformation, excludes AMM and utilizes modality balancing to successfully alleviate unimodal bias. FIGMENTS also provides a first step towards fine-grained CMM detection by including three classes: truthful, out-of-context, and miscaptioned image-caption pairs. Furthermore, we introduce a method for generating realistic synthetic training data that maintains crossmodal relations between legitimate images and false human-written captions that we term Crossmodal HArd Synthetic MisAlignment (CHASMA). We conduct extensive comparative study using a Transformer-based architecture. Our results show that incorporating CHASMA in conjunction with other generated datasets consistently improved the overall performance on FIGMENTS in both binary (+6.26%) and multiclass settings (+15.8%).We release our code at: https://github.com/stevejpapad/figments-and-misalignments


翻译:暂无翻译

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员