In high-energy physics it is a recurring challenge to efficiently and precisely (enough) calculate the global significance of, e.g., a potential new resonance. We propose a new method that models the significance in the search region as a Gaussian Process. The kernel of the Gaussian Process is approximated with a covariance matrix and is calculated with a carefully designed set of background-only data sets, comparable in number to the random background-only data sets used in a typical analysis that relies on the average upcrossings of the significance. The trials factor for both low and moderate significances can subsequently be calculated to the desired precision with a computationally inexpensive random sampling of the Gaussian Process. In addition, once the covariance of the Gaussian Process is determined, the average number of upcrossings can be computed analytically. In our work we give some highlights of the analytic calculation and also discuss some peculiarities of the trials factor estimation on a finite grid. We illustrate the method with studies of three complementary statistical models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员