In this paper, we develop an effective degrees of freedom (EDoF) performance analysis framework specifically tailored for near-field XL-MIMO systems. We explore five representative distinct XL-MIMO hardware designs, including uniform planar array (UPA)-based with point antennas, two-dimensional (2D) continuous aperture (CAP) plane-based, UPA-based with patch antennas, uniform linear array (ULA)-based, and one-dimensional (1D) CAP line segment-based XL-MIMO systems. Our analysis encompasses two near-field channel models: the scalar and dyadic Green's function-based channel models. More importantly, when applying the scalar Green's function-based channel, we derive EDoF expressions in the closed-form, characterizing the impacts of the physical size of the transceiver, the transmitting distance, and the carrier frequency. In our numerical results, we evaluate and compare the EDoF performance across all examined XL-MIMO designs, confirming the accuracy of our proposed closed-form expressions. Furthermore, we observe that with an increasing number of antennas, the EDoF performance for both UPA-based and ULA-based systems approaches that of 2D CAP plane and 1D CAP line segment-based systems, respectively. Moreover, we unveil that the EDoF performance for near-field XL-MIMO systems is predominantly determined by the array aperture size rather than the sheer number of antennas.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员