Motivated by the problem of matching two correlated random geometric graphs, we study the problem of matching two Gaussian geometric models correlated through a latent node permutation. Specifically, given an unknown permutation $\pi^*$ on $\{1,\ldots,n\}$ and given $n$ i.i.d. pairs of correlated Gaussian vectors $\{X_{\pi^*(i)},Y_i\}$ in $\mathbb{R}^d$ with noise parameter $\sigma$, we consider two types of (correlated) weighted complete graphs with edge weights given by $A_{i,j}=\langle X_i,X_j \rangle$, $B_{i,j}=\langle Y_i,Y_j \rangle$. The goal is to recover the hidden vertex correspondence $\pi^*$ based on the observed matrices $A$ and $B$. For the low-dimensional regime where $d=O(\log n)$, Wang, Wu, Xu, and Yolou [WWXY22+] established the information thresholds for exact and almost exact recovery in matching correlated Gaussian geometric models. They also conducted numerical experiments for the classical Umeyama algorithm. In our work, we prove that this algorithm achieves exact recovery of $\pi^*$ when the noise parameter $\sigma=o(d^{-3}n^{-2/d})$, and almost exact recovery when $\sigma=o(d^{-3}n^{-1/d})$. Our results approach the information thresholds up to a $\operatorname{poly}(d)$ factor in the low-dimensional regime.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
17+阅读 · 2018年4月2日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员