Lack of texture often causes ambiguity in matching, and handling this issue is an important challenge in optical flow estimation tasks. Some methods insert stacked transformer modules that allow the network to use global information of cost volume for estimation. But the global information aggregation often incurs serious memory and time costs during training and inference, which hinders model deployment. We draw inspiration from the traditional local region constraint and design the local similarity aggregation (LSA) and the shifted local similarity aggregation (SLSA). The aggregation for cost volume is implemented with lightweight modules that act on the feature maps. Experiments on the final pass of Sintel show the lower cost required for our approach while maintaining competitive performance.


翻译:缺乏纹理常常导致匹配中的歧义,解决这个问题是光流估计领域的一个重要挑战。一些方法为了允许网络使用代价图的全局信息来估计光流,会插入堆叠的变换器模块。但是全局信息的聚合通常会在训练和推断期间产生严重的内存和时间成本,这限制了模型的部署。作者从传统的局部区域约束策略中汲取灵感,设计了局部相似性聚合(LSA)和平移局部相似性聚合(SLSA)。代价图的聚合是通过轻量级模块在特征图上实现的。在 Sintel 数据集的最终阶段的实验表明,我们的方法需要更低的成本,同时保持了有竞争力的性能。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员