In this work we give an efficient construction of unitary $k$-designs using $\tilde{O}(k\cdot poly(n))$ quantum gates, as well as an efficient construction of a parallel-secure pseudorandom unitary (PRU). Both results are obtained by giving an efficient quantum algorithm that lifts random permutations over $S(N)$ to random unitaries over $U(N)$ for $N=2^n$. In particular, we show that products of exponentiated sums of $S(N)$ permutations with random phases approximately match the first $2^{\Omega(n)}$ moments of the Haar measure. By substituting either $\tilde{O}(k)$-wise independent permutations, or quantum-secure pseudorandom permutations (PRPs) in place of the random permutations, we obtain the above results. The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the polynomial method, which allows us to prove query lower bounds at finite-$N$ by interpolating from the much simpler large-$N$ limit. The key technical step is to exhibit an orthonormal basis for irreducible representations of the partition algebra that has a low-degree large-$N$ expansion. This allows us to show that the distinguishing probability is a low-degree rational polynomial of the dimension $N$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
57+阅读 · 2022年1月5日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
57+阅读 · 2022年1月5日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员