Increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LIDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible. While sensor simulations are of crucial importance for perception algorithm development, the simulation environment will be incomplete for the simulation of holistic AV operation without being complemented by a realistic vehicle dynamic model and traffic cosimulation. Therefore, this paper investigates existing simulation environments, identifies use case scenarios, and creates a cosimulation environment to satisfy the simulation requirements for autonomous driving function development using the Carla simulator based on the Unreal game engine for the environment, Sumo or Vissim for traffic co-simulation, Carsim or Matlab, Simulink for vehicle dynamics co-simulation and Autoware or the author or user routines for autonomous driving algorithm co-simulation. As a result of this work, a model-based vehicle dynamics simulation with realistic sensor simulation and traffic simulation is presented. A sensor fusion methodology is implemented in the created simulation environment as a use case scenario. The results of this work will be a valuable resource for researchers who need a comprehensive co-simulation environment to develop connected and autonomous driving algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
13+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
13+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员