Lack of generalization to unseen domains/attacks is the Achilles heel of most face presentation attack detection (FacePAD) algorithms. Existing attempts to enhance the generalizability of FacePAD solutions assume that data from multiple source domains are available with a single entity to enable centralized training. In practice, data from different source domains may be collected by diverse entities, who are often unable to share their data due to legal and privacy constraints. While collaborative learning paradigms such as federated learning (FL) can overcome this problem, standard FL methods are ill-suited for domain generalization because they struggle to surmount the twin challenges of handling non-iid client data distributions during training and generalizing to unseen domains during inference. In this work, a novel framework called Federated Split learning with Intermediate representation Sampling (FedSIS) is introduced for privacy-preserving domain generalization. In FedSIS, a hybrid Vision Transformer (ViT) architecture is learned using a combination of FL and split learning to achieve robustness against statistical heterogeneity in the client data distributions without any sharing of raw data (thereby preserving privacy). To further improve generalization to unseen domains, a novel feature augmentation strategy called intermediate representation sampling is employed, and discriminative information from intermediate blocks of a ViT is distilled using a shared adapter network. The FedSIS approach has been evaluated on two well-known benchmarks for cross-domain FacePAD to demonstrate that it is possible to achieve state-of-the-art generalization performance without data sharing. Code: https://github.com/Naiftt/FedSIS


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员