We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the out-degree of each vertex is bounded. On one hand, we show how to orient the edges such that the out-degree of each vertex is proportional to the arboricity $\alpha$ of the graph, in, either, an amortised update time of $O(\log^2 n \log \alpha)$, or a worst-case update time of $O(\log^3 n \log \alpha)$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off, namely either $O(\log n \log \alpha)$, amortised, or $O(\log ^2 n \log \alpha)$, worst-case time, for the problem of maintaining an edge-orientation with at most $O(\alpha + \log n)$ out-edges per vertex. Since our algorithms have update times with worst-case guarantees, the number of changes to the solution (i.e. the recourse) is naturally limited. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain an $O(\varepsilon^{-6}\log^3 n \log \rho)$ worst-case update time algorithm for maintaining a $(1+\varepsilon)$ approximation of the maximum subgraph density, $\rho$. Secondly, we obtain an $O(\varepsilon^{-6}\log^3 n \log \alpha)$ worst-case update time algorithm for maintaining a $(1 + \varepsilon) \cdot OPT + 2$ approximation of the optimal out-orientation of a graph with adaptive arboricity $\alpha$. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $O(\alpha)$ forests.Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety, of problems including maximal matching, $\Delta+1$ coloring, and matrix vector multiplication. All update times are worst-case $O(\alpha+\log^2n \log \alpha)$, where $\alpha$ is the current arboricity of the graph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年12月13日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员