Related-domain attackers control a sibling domain of their target web application, e.g., as the result of a subdomain takeover. Despite their additional power over traditional web attackers, related-domain attackers received only limited attention by the research community. In this paper we define and quantify for the first time the threats that related-domain attackers pose to web application security. In particular, we first clarify the capabilities that related-domain attackers can acquire through different attack vectors, showing that different instances of the related-domain attacker concept are worth attention. We then study how these capabilities can be abused to compromise web application security by focusing on different angles, including: cookies, CSP, CORS, postMessage and domain relaxation. By building on this framework, we report on a large-scale security measurement on the top 50k domains from the Tranco list that led to the discovery of vulnerabilities in 887 sites, where we quantified the threats posed by related-domain attackers to popular web applications.


翻译:在本文中,我们首次界定和量化了相关领域攻击者对网络应用安全构成的威胁。特别是,我们首先澄清了相关领域攻击者通过不同攻击矢量获得的能力,表明相关领域攻击者概念的不同实例值得注意。然后我们研究如何利用这些能力损害网络应用安全,注重不同角度,包括饼干、CSP、COSC、COSC、Message和域内放松。我们在此框架内,报告在Tranco 名单上50公里最高域进行大规模安全测量,发现887个地点存在脆弱性,我们在那里量化了相关领域攻击者对流行网络应用的威胁。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员