In this thesis, we analyse the generalisations of the Ornstein-Uhlenbeck (OU) semigroup and study them in both quantum and classical setups. In the first three chapters, we analyse the dissipative dynamics on noncommutative/quantum spaces, in particular, the systems with multiparticle interactions associated to CCR algebras. We provide various models where the dissipative dynamics are constructed using noncommutative Dirichlet forms. Some of our models decay to equilibrium algebraically and the Poincare inequality does not hold. Using the classical representation of generators of nilpotent Lie algebras, we provide the noncommutative representations of Lie algebras in terms of creation and annihilation operators and discuss the construction of corresponding Dirichlet forms. This introduces the opportunity to explore quantum stochastic processes related to Lie algebras and nilpotent Lie algebras. Additionally, these representations enable the investigation of the noncommutative analogue of hypoellipticity. In another direction, we explore the potential for introducing statistical models within a quantum framework. In this thesis, however, we present a classical statistical model of multivariate Graph superposition of OU (Gr supOU) process which allows for long(er) memory in the modelling of sparse graphs. We estimate these processes using generalised method of moments and show that it yields consistent estimators. We demonstrate the asymptotic normality of the moment estimators and validate these estimators through a simulation study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员